1、行列式
本章的核心考点是行列式的计算,包括数值型行列式的计算和抽象型行列式的计算,其中数值型行列式的计算又分为低阶行列式和高阶行列式两种类型。对于低阶的数值型行列式来说,主要的处理方法是:找1,化0,展开,即首先找行列式中最简单的元素,利用行列式的性质将最简单元素所在的行或者列的其他元素均化为0,然后再利用行列式的展开定理对目标行列式进行降阶,最后利用已知公式求得目标行列式的值。对于高阶的数值型行列式来说,它的处理方法有两种:一是三角化;二是展开。所谓的三角化就是利用行列式的性质将目标行列式化成上三角行列式或者下三角行列式,三角化的主要思想就是化零,即利用行列式中各元素之间的关系通过行列式的性质化出较多的零,它是解决“爪型”行列式和“对角线型”行列式的主要方法。而所谓的展开就是利用行列式的展开定理对目标行列式进行降阶,一般解决的是递推形式的行列式,而它的关键点则是找出与的结构。对于数值型行列式来说,考试直接考查的题目相对较少,它总是伴随着线性方程组或者特征值与特征向量等的相关知识出题的。对行列式的考查多以抽象型行列式的形式出现,这一部分的考题综合性很强,与后续章节的联系比较紧密,除了要用到行列式常见的性质以外,更需要结合矩阵的运算,综合特征值特征向量等相关考点,对考生能力要求较高,需要考生有扎实的基础,对线性代数整个学科进行过细致而全面的复习。抽象行列式的计算常见的方法有三种:一是利用行列式的性质;二是使用矩阵运算;三是结合特征值与特征向量。
2、矩阵
矩阵是线性代数的核心内容,它是后续章节知识的基础,矩阵的概念、运算及其相关理论贯穿着整个线性代数这门学科。这部分的考点较多,重点是矩阵的运算,尤其是逆矩阵、矩阵的初等变换和矩阵的秩是重中之重的核心考点。考试题目中经常涉及到伴随矩阵的定义、性质、行列式、可逆阵的逆矩阵、矩阵的秩及包含伴随矩阵的矩阵方程等。另外,这几年还经常出现与初等变换与初等矩阵相关的命题。本章常见题型有:计算方阵的幂、与伴随矩阵相关的命题、与初等变换相关的命题、有关逆矩阵的计算与证明、解矩阵方程等。 3、向量
本章的核心考点是向量组的线性相关性的判断,它也是线性代数的重点,同时也是考研的重点。2014年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,在做此处题目的时候要学会与线性表出、向量组的秩及线性方程组等相关知识联系,从各个方面加强对向量组线性相关性的理解。此章常见的考试题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题(数一要求)。
4、线性方程组
考研数学重点考查的章节,从历年真题来看,方程组出题的频率较高,几乎每年都有考题。本章的核心考点有:解的判定与解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。主要的题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题等。本章节常与向量章节联系在一起出题,二者属于同一问题的不同描述,在考题中经常是交替出现的。
5、特征值与特征向量
考研数学重点考查的章节,线性代数的核心内容,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。核心题型有:数值型矩阵的特征值和特征向量的计算、抽象型矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求矩阵A、有关实对称矩阵的问题。本章节与二次型联系也很紧密。
6、二次型
这部分需要掌握两点:一是用正交变换法和配方法化二次型为标准形,核心是正交变换法。但是需要注意的是对于出现多重特征值时,解方程组所得的对应的特征向量不一定是正交的,这时需要对所得到的向量组进行施密特正交化,然后再规范化。二是二次型正定性的判断,核心考点是二次型正定性的判定方法。