概率论与数理统计是全国硕士研究生入学数学考试的一个重要组成部分。从研究必然问题到处理随机问题,不仅大多数初学者感到困难,对于曾经学过概率论与数理统计的广大考生来说也觉得问题不少,特别是在做习题以及解决实际应用方面遇到的困难会更多一些。下面为大家在这个方面做些总结。
一、几何型概率及概率数理统计的复习
几何型概率原则上只有理工科考,是数学一考察的对象,最近两年经济类的大纲也加进来了,但还没有考过,数学三、数学四的话虽然明确写在大纲里,还没有考。几何概率是一个考点,但不是一个考察的重点。它考的可能性很小,如果考也是考一个小题,或者是选择题或者是填空题或者在大题里运用一下概率的模式,就是一个事件发生的概率是等于这个事件的度量或者整个样本空间度量的比。这个度量的话指的是面积,一维空间指的是长度,二维空间指的是面积,三维空间指的是体积。所以几何概率指的是长度的比、面积的比和体积的比。重点是面积的比,是二维的情况。
几何概率其实很简单,是一个程序化的过程,按这四个步骤你肯定能做出来。第一步把样本空间和让你求概率的事件用几何表示出来。第二步既然是几何概率那就是图形,第二步把几何图形画出来。第三步你就把样本空间和让你求概率的事件所在的几何图形的度量,就是刚才所说的面积或者体积求出来。第三步代公式。以前考过的几何概率的题度量的计算都是用初等的方法做。
二、数理统计中考试重点及参数估计比重
参数估计这部分它占数理统计的一多半内容,参数估计这块应该是最重要的。统计里面第一章就是关于样本还有统计量分布这部分,这部分就是求统计量的数字特征,统计量是随机变量。统计里面有什么题型,一个参数估计,一个求统计量数字特征或者求统计量的分布,统计量是随机变量,任何随机变量都有分布。自然会有这样的题型。求统计量的数字特征,求统计量的分布,然后参数估计,然后估计的标准。统计这个内容对大家来说应该是比较好掌握的,题型比较少,你比较好把这个题做好。
三、概率问题的重点及得分方法
随机变量分布这是一大块内容,基本每都年考一点,还有一个就是数理特征和数理统计基本考一个大题,概率和数理统计这部分如果从复习角度来看我们首先要理解概念,我认为这里面有三个典型途径:第一古典概率,一个概率的公式的推算,第二个途径就是利用我们的分布信息来求概率,我们涉及到一维的也可以是二维的,即可以是离散型的也可以是连续型的,都有求概率的方法,我们讨论概率统计里的问题,比如分布函数问题,本身就是求概率,你只要知道求概率统计三个途径,所以我讨论分布函数,由分布函数可以讨论概率分布函数,源头是分布函数,分布函数基础是求概率,通过这个角度把握我认为概率统计发现不是你想象的那么复杂了。这里面重点的是二两者,第一种古典概率考的是排列组合,这个是初中内容,稍微难一点古典概率的题,同学没有过多关心,不会从这个角度考的,而是根据我刚才的分析。所以把握这种思路以后,实际上概率统计知识应该把线性代数,特别比高等数学更好拿分。另外稍微应该注意一下概率统计里面随机事件和随机变量之间的转换关系。我们可以通过随机事件引进随机变量,反过来也可以,所以大家复习时候。讨论随机事件之间关系问题也可以借用随机变量之间关系分析,这是概率统计方面大家应该注意几个比较典型的知识点。
【下一页】