摘要:
考研数学是考研四门课中的重头戏,是决定考研成绩总分高低的关键科目,也是大家很重视的一门课。数学的考试内容很多,知识面宽,综合性强,技巧性高。有时发现花了很多时间来复习,收效却不大,这就可能是学习方法存在问题。
考研试题中有不少比较难的题目。难题之所以难,一个原因是不容易找到解题思路;另一个是综合性较强,往往会涉及到多种方法和技巧。为了提高解难题的能力,应当多看、多做、多总结。
多看,就是通过看辅导书、听辅导课,多见识各种题型和解题方法;多做,就是亲手做足够的题目,要认真地做好题目的每一步,直到得出正确的结果。只有如此,才能体会解题过程中需要注意的各种问题,将解题能力的提高落到实处。多总结,就是在做题过程中,不断总结解题思路、方法和技巧。
考研试题,虽然有难题,但都不是偏题、怪题,只要平时多看、多练,找到解题思路不是很困难。有些时候不容易一下找到解决整个题的全部思路,有了一点思路后,要立即动手开始做。往往是做了第一步之后,就比较容易看到第二步的思路。另一方面,综合性较强的题目往往要经过好几步才能解决。能否持续作战,得到最后的结果,取决于自己平时积累的功夫,这种功夫必须靠自己动手解题才能培养。
善于总结归纳解题方法
在历年的考研试题中,可以看到某种题型经常出现,但是在内容和形式上每次都有一些变化。如果我们不断地总结和归纳解题方法,就能够提高对于这类题的解题能力,无需担心新的变化。例如,在一元函数部分,求证包含函数及其导数的某个等式或者不等式,是一类常见的题型。这类题目的解法会涉及到罗尔定理、拉格朗日定理和柯西定理,或者泰勒公式。
例如2004年数学(一)中有用拉格朗日定理证明不等式的题,2001年数学(一)中有用泰勒公式定理证明等式的题。只要认真总结,就可以归纳出这样的规律:(1)是否需要构造辅助函数?怎样构造辅助函数?(2)什么样的条件下需要运用拉格朗日定理、柯西定理,或者需要运用泰勒公式?(3)如果需要运用泰勒公式,应当展成几阶泰勒公式?在哪些点上展开?如果在解题训练中将这些方法归纳清楚,并加以练习,遇到相似的题目时,把握就大多了。
在数学(一)中,多元函数微分学、曲线和曲面积分等部分每年都有题目。微分学部分的试题主要是微分学的概念与复合函数微分法,仔细分析这些题目,不但可以了解问题的各种提法,而且能够归纳出有效的解题方法。对于曲线积分和曲面积分,应当总结是否需要运用格林公式和高斯公式?怎样运用这些公式?由于多元微积分部分的题目一般不是很难,所以只要注意归纳总结,提高解题能力没有太大困难。