从大三下开学之后,着手开始准备数一的复习,前期从3月中旬到七月中旬大约4个月的时间,数学方面的任务,一般地,是把复习全书通一遍,这里包括把基本的知识点搞懂,定理理解并能知道在哪些题目上面可以应该,并把全书上面的习题好好的做一遍,如果时间允许,可以在把全书搞定的时候参考一下教材上面的相关内容,加深理解和记忆。
前期数学复习的原则是细和全,做题的时候要认真,仔细思考,只要通过自己的努力可以掌握的东西,一定要尽力掌握下来。这里之所以不说全部的内容,是因为全书上面有些东西是基本上不会考到的东西,而且有些题目太偏,太难,不是符合考研数学的出题原则,碰到这种情况时,可以略过,关于这个问题下面还会继续讨论。前期建议一天两个小时(如果条件允许可以更多,这样可以减轻后面复习时的负担),我的习惯是一个小时复习5页左右,具体情况根据所相关的知识的难易和自己掌握的水平可以有不同,至于时间上的分配看课程学习及自己的空闲时间安排就好。对上面(全书)列出的每个定义,要好好理解,对于每个定理及其举例应用,要好好体会。考研数学大题里面很多是考察的很多定理的应用和一些常用的结论和解题技巧,但是在选择题和填空题这样的题目里面,很大程度上还存在对基础定义的考察(如连续的定义,可导的定义判断,矩阵可逆的定义应用,随机变量独立性的定义计算,等等),理科考生容易对记忆性的东西感觉头痛,但是在数学复习时一定要把基础知识的记忆做为重点,这一问题在三科里面都会出现。前期数学复习时不能着急赶进度(即使你比其他人进行的慢),毕竟,考试是考你最终会了什么,而不是你已经看过什么,只要看了就要看懂会用,这是前期数学复习时需要记住的一点。
中期的四个月左右的时间,大约从7月中旬到11月中旬的时间里面,数学复习时有两个主要的内容,一个是把复习全书再通一遍,另一个是做真题。前两个月(或一个半月)的时间里,把全书做第二遍,由于已经做过一遍,应该会有些印象,按每天四个小时的数学时间安排,可能用不了两个月的时间就应该完成了,但也要注意复习的质量要有保证。我的习惯是早上9:00到12:00三个小时,7至8页/小时,复习的原则与前期一样,也是细和全,同时也注意积累做题的方法。晚上8:30-9:30一个小时,接着已经完成的进度继续复习,也可经常性的拿出时间来对遇到的问题进行总结和归纳,整理自己的做题思路。全书复习的第二遍是非常关键的,既把前期时没有搞透或不确定的问题重新梳理一遍,又为下面的真题做一个铺垫,这也是系统的复习知识点的最后一次了,这个工作做的好,以后的工作就会顺利的多。
后两个月做真题,建议做三遍左右,熟悉考研的出题方式,应用已经掌握的知识点,做的越透,知识点间的协调使用就越好。考研真题的综合性比较强,可能在第一遍做时会感觉很不适应(全书上面的题,大多都是为练习某个知识点而特别设定的,要简单的多),但是在两遍以后,一般思路都会有了。虽然真题之间考察重点会有区别,设题方式不同,但是在做了大量的真题之后,大家会发现,其实全书上大部分知识点在真题上面都会有所体现,而我们通过真题把基础串联起来,熟练运用的目的也就达到了。建议的进度是一天一套,早上9:00-12:00把题目做一遍,晚上8:30-9:30的一个小时里把错误纠正一下,对做题时遇到的问题总结一下,并好好体会。事实上,前些年的真题远不用3个小时就可以完成,在时间的分配和任务的安排上可以机动处理。
其实基本上在中期考研数学的水平已经在各同学之间确定了。后期虽然也有两个月的时间,一个是短期内数学不可能有质的飞跃,另一个是专业课此时的压力要大的多,特别是专业课考的内容比较多的时候,还有就是政治和英语这种短期内可以有成效的科目在这两个月的时间里要分配更多的时间和注意力。后期数学方面的主要任务是把已经掌握的知识加以熟练的运用,不要因为时间间隔长把思路搞钝了。就任务安排上面,第1个月可以把复习全书再看一遍,第二个月做一做模拟练习,之后再巩固一下知识点,通一次全书。第一个月复习全书时着重在方法和思路的总结上,注意各个知识之间的联系和题目的应对方法,不用看的特别仔细,大略的通一遍就可以。模拟题做一套就行了(时间上也不允许做许多套),做两遍左右,以练手为主,不用太注意对错,也是建议一天一套,这样效果要好一些。考前最后一个星期左右的时间里,可以再将复习全书看一遍,这时的主要任务不是为做题,而是把一些生疏的知识点再回忆起来,做到知识点记忆全面,比如一些考的比较少的定义,一些容易忘的公式、定理等,这个任务一般并不用特别长的时间就可以完成,这样的话还可以再找真题看一看。
高数如果按课本分,一般有上、下两册,上册是很基本的东西,下册是考研数学的命题重点。以李的09版复习全书来看,高等数学共分十一章,第四(微分中值定理及其应用)、第六(微分方程)、第八(多元函数微分学)、第九(多元函数积分的概念、计算及其应用)、第十(多元函数积分学中的基本公式及其应用)、第十一(无穷级数)章是考研的重点(很容易出现大题),对于这些章节,在复习的时候一定要认真的把全书上的内容吃透,熟练掌握。而对于其他的章节,考察的方面基本在选择和填空上面,而且范围一般也都局限于一些热点的问题上面,在复习的时候可以择主要的内容强化复习,对于非重点问题可以一带而过。
具体的讲,第一章极限、连续与求极限的方法,要掌握无穷小阶的判断,会用洛比达法则计算未定型的极限(这里提醒各位要注意其条件,如果在解答题里面应用此公式时),会判断函数的连续性(本质上就是极限的存在与不存在问题),要注意使用定义判断连续性的方法。
第二章一元函数的导数与微分概念及其计算,要掌握导数(微分)的定义判断,可导与可微间的关系(注意与多元函数区别)。
第三章一元函数积分概念、计算及应用,要掌握一元函数积分的定义(亦包括按定义求积分的情况),会用换元积分法和分部积分法求简单积分,微元法求解实际问题。
第四章,要掌握费马定理、罗尔定理并熟练运用,会用拉格朗日定理解决一些问题。
第五章一元函数的泰勒公式及及其应用,要掌握一元函数的泰勒公式展开并会应用泰勒公式解决无穷小阶的问题。
第六章,要掌握各种形式微分方程的解法,会应用简单的微分方程解决实际问题。
第七章向量代数和空间解析几何,要掌握直线和平面方程的确定方法,对于二次曲面注意在多元函数积分学中的应用(画图)。
第八章,要掌握多元函数极限、连续、导数之间的关系及定义求法,多元函数极值的求解,多元函数最大值与最小值的判断。
第九章,要掌握各类多元函数积分的运算方法(包括二重、三重积分,第一、二型线积分,第一、二型面积分)。
第十章,要掌握格林公式、高斯公式、斯托克斯公式的应用简化多元函数积分的运算,二型线积分与路径无关的条件及相关运用。
第十一章,要掌握各类级数的敛散性的判断,幂级数的收敛域、运算与和函数的性质,幂级数的求和与函数的幂级数展开,傅里叶级数。高数在数一复习全书里占一半还多,是考研数学复习里的大头。
线代,以李的复习全书来看,共分六章,基本上每章都是重点,这是由于线性代数的前后知识点间的联系紧密,又相互独立,所以出题时的综合性都比较强,另一方面看,其实这也是一种好事,这决定了对于线代的题,一般解答方式不只一种,复习的过程中要注意掌握最高效的方法去解决问题。具体的讲,第一章行列式,要掌握行列式的按行(列)展开公式,会求一些简单的参数型行列式的值,了解克莱姆法则。第二章矩阵及其运算,要掌握矩阵可逆的定义(求法),理解初等变换和初等矩阵。第三章n维向量与向量空间,要掌握线性相关与线性无关的判断及相关的应用,会用Schmidt方法正交化向量组得规范正交基。第四章线性方程组,要掌握齐次与非齐次的各种线性方程的解法。第五章矩阵的特征值和特征向量,要掌握矩阵的特征值与特征向量的性质及运用,会判断矩阵是否可相似对角化并会将矩阵相似对角化。第六章二次型,要掌握二次型的标准化方法。线性代数的特点是知识点多,各知识点间相关性强,加强记忆打好基础,并注意联系前后问题复习线代。
概率,以李的复习全书来看,共分七章,第二(随机变量的分布及概率)、第三(多维随机变量及其分布)、第四(随机变量的数学特征)、第七(参数估计和假设检验)章是考研的重点,是复习需要认真把握的内容。具体的讲,第一章随机事件与概率,要掌握使用全概率公式与贝叶斯公式计算事件的概率。第二章,要掌握一维随机变量的分布的计算方法(包括离散型随机变量和连续型随机变量,两者的计算方法不同)。第三章,要掌握二维随机变量的分布的计算方法(包括离散型随机变量和连续型随机变量,两者的计算方法不同)。第四章,要掌握一维与二维随机变量的数字特征的计算方法。第五章大数定律和中心极限定理,要掌握大数定律的成立条件,中心极限定理的应用。第六章数理统计的基本概念,要掌握统计量的分布计算和证明方法。第七章,要掌握点估计和假设检验的计算方法。概率论与数理统计的特点与线性代数有些类似,知识点也比较多,但是前后的知识点间的联系并不十分紧密,在复习的时候要注意区别相似的问题间的不同的解法和思考方式。
数学的复习切忌眼高手低,很多考研的同学在数学复习的时候,不是“做”题,而是“看”题,这样经常会出现的情况就是某个题目印象很深,看解答自己的思路很清晰,但直接却完成不了,总会出现这样那样的问题。在做题时,不能是“仅为做题而做题”,要有自己的额外收获,注意总结和比较,这样学习的效果才会更好,特别是在线代和概率这两门数学的复习上时,前后章节有很强的关系,学习时要多思考。举一个简单的例子,不定式的极限,既可以使用极限的运算法则计算,也可以在符合要求的情况下使用洛比达法则计算,也可以在题目给出的条件中使用定义计算(往往是连续或者导数等),还可以使用泰勒公式计算,同样的一个相似问题在不同章节的内容里都有论述,复习时要联想起来,有利于深刻的考虑问题。
数一在复习时,很多同学的一种感觉是内容太多了,记了后面的,而前面的又忘了。杜绝这种情况发生的一个办法是上面的多联想记忆,另一个建议大家注意运用“目录”的作用。目录上的每个章节都有一个标题,在复习一个内容时,可以翻开目录看一下这一节的题目,尽力想一下此节的相关内容,并与此节相关的知识也尽量考虑一下。这个过程也可以在晚上睡觉之前进行,大体回忆一下所学的东西,这个过程时间需要的不多,但是效果个人感觉是比较好的,很利于记忆和理解。另外,个人感觉效果很好的复习安排是间科复习,意思就是把各科的章节复习同步进行。例如,复习完高数的第一章后完成线代的第一章,之后是概率的第一章,如此继续,经常性的变科复习不仅能活跃思维,也避免长时间的在一科上复习导致思维定式,我的体会中这样处理感觉是很不错的方式。
谈起数一复习全书,不应该是一个个具体的题目及其特定与不特定的解法,而应该是对某些或某个类型的同样的题目的解法及思考方式。这主要就体现在每一章的第II部分的内容即考核知识要点讲解里面,对这一部分的内容,一定要细细的看,认真总结和体会各类型的题目之间的关联及对应的解法。举一个简单的例子,比如n阶方阵可逆等价于存在B,使得AB=BA=E,也等价于|A|≠0,…。根据全书列出的具体的题目,体会怎样分析问题,因为在考试时出的都是具体的题目考核某些特定的知识点和特定解法,都会有高效的求解方式,在平时的学习中注意积累经验,考试时可以最大程度的节省时间并避免出不必要的错误。
复习全书的重要性是不容忽视的,个人感觉教材对考研数学应试的帮助不大,即使把教材弄的很透了也不一定会有一个好的考研数学成绩。我说过的数学143,总分421的同学,他的数一复习全书看了5遍,而且最后考试时还有一个填空题是本不应该错的,所以复习全书的效果可想而知。一般地,复习全书通的越好,次数越多,基础知识掌握的就越熟练。考研数学难,难在基础知识的灵活运用上,这一点已经明确过,把基础知识打牢,做大题的练习来培养知识的运用,最后的成绩就会比较好。
数一的基础知识掌握的好了,再在一定数量的真题和模拟题的训练下,初试的数学成绩在130分以上,难度不会太大。选择和填空题,基本的目标是全对,这个并不困难,一般的说,考研数学(一)的选择和填空,计算量不会太大,考察的主要是特定的知识点的记忆或者对某个特定的问题的解法,这都属于基础知识的范畴,把全书搞透,不落知识点的复习,选择和填空就没有问题。在选择和填空这种容易得分的题目上丢分是很不应该的。解答题,综合性比较强,虽然是以基础知识为主线,但是如果平时练的少或者知识点记忆不牢固,很容易没有思路,而且命题老师会出一些选拔性的题目,供有能力的同学提高来做,然而即使难度比较大的题目,发挥正常的话,得一半的分也是可以实现的,所以在应试考研数学时,解答题的目标是两个高数半题的分,一个线代半题的分,一个概率半题的分。130分个人感觉在认真复习数学时是可以达到的目标,如果本身基础好或者复习充分,140分以上是可以考虑的分数。